

Semester One Examination, 2023

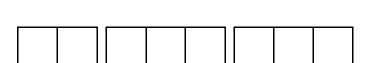
Question/Answer booklet

MATHEMATICS **SPECIALIST** UNIT 3

Section Two: Calculator-assumed

WA student number:

In figures



SOLUTIONS

In words

Your name

Time allowed for this section

Reading time before commencing work: Working time:

ten minutes one hundred minutes Number of additional answer booklets used (if applicable):

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, notes on two unfolded sheets of A4 paper, and up to three calculators, which can include scientific, graphic and Computer Algebra System (CAS) calculators, are permitted in this ATAR course examination

Important note to candidates

No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	7	7	50	48	35
Section Two: Calculator-assumed	12	12	100	90	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet preferably using a blue/black pen. Do not use erasable or gel pens.
- 3. You must be careful to confine your answers to the specific question asked and to follow any instructions that are specific to a particular question.
- 4. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 5. It is recommended that you do not use pencil, except in diagrams.
- 6. Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

65% (90 Marks)

Section Two: Calculator-assumed

This section has **twelve** questions. Answer **all** questions. Write your answers in the spaces provided.

3

Working time: 100 minutes.

A particle moves in space with position vector $r(t) = \begin{pmatrix} 2\cos(4t) \\ -3t \\ -2\sin(4t) \end{pmatrix}$ cm, where *t* is the time in seconds since its motion began.

SPECIALIST UNIT 3

Question 8

(a) Determine the distance of the particle from its initial position after $\frac{\pi}{3}$ seconds. (3 marks)

Solution

$$r\left(\frac{\pi}{3}\right) - r(0) = \begin{pmatrix} -1\\ -\pi\\ \sqrt{3} \end{pmatrix} - \begin{pmatrix} 2\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} -3\\ -\pi\\ \sqrt{3} \end{pmatrix}$$

$$\left| \begin{pmatrix} -3\\ -\pi\\ \sqrt{3} \end{pmatrix} \right| = \sqrt{\pi^2 + 12} \approx 4.68 \text{ cm}$$
Specific behaviours
 \checkmark position vectors at $t = 0$ and required time
 \checkmark displacement vector
 \checkmark correct distance

(b) Show that the particle is moving with a constant speed.

Solution		
Velocity vector:		
$ \underbrace{v(t)}_{\sim} = \frac{d}{dt} \left(r(t) \right) \\ = \begin{pmatrix} -8\sin(4t) \\ -3 \\ -8\cos(4t) \end{pmatrix} $		
Speed:		
$\left \underbrace{v(t)}_{\sim} \right = \sqrt{(-8\sin(4t))^2 + (-3)^2 + (-8\cos(4t))^2}$		
$=\sqrt{64\sin^2(4t) + 64\cos^2(4t) + 9}$		
$=\sqrt{64+9}$		
$=\sqrt{73} \approx 8.54 \text{ cm/s}$		
Hence particle is moving with a constant speed.		
Specific behaviours		
✓ correct velocity vector		
✓ correct expression for magnitude of vector		
\checkmark simplifies magnitude to show constant		

See next page

CALCULATOR-ASSUMED

4

(6 marks)

(3 marks)

Question 9

(6 marks)

Particles *A* and *B* are moving with constant velocities and have initial positions $\begin{pmatrix} -8\\2\\1 \end{pmatrix}$ m and

$$\begin{pmatrix} 7\\7\\-15 \end{pmatrix}$$
 m respectively. 2 seconds later A is at $\begin{pmatrix} 0\\-2\\4 \end{pmatrix}$ m.

(a) Determine the velocity of *A*.

The velocity of *B* is
$$\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$
 m/s.

(b) Show that the paths of *A* and *B* cross, state the position vector of this point, and explain whether the particles collide. (5 marks)

Solution

$$r_{A}(t) = \begin{pmatrix} -8\\2\\10 \end{pmatrix} + t \begin{pmatrix} 4\\-2\\-3 \end{pmatrix}, \quad r_{B}(s) = \begin{pmatrix} 7\\7\\-15 \end{pmatrix} + s \begin{pmatrix} 1\\-3\\2 \end{pmatrix}$$
For paths to cross we require $r_{A} = r_{B}$. Equating i and j coefficients and solving simultaneously:

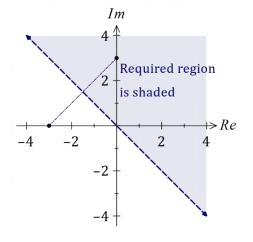
$$4t - 8 = s + 7, \quad 2 - 2t = 7 - 3s \Rightarrow t = 5, s = 5$$
Check k coefficients are equal with these values of t and s :

$$t = 5 \Rightarrow 10 - 3(5) = -5, \quad s = 5 \Rightarrow -15 + 2(5) = -5$$
Because $r_{A}(5) = r_{B}(5) = \begin{pmatrix} 12\\-8\\-5 \end{pmatrix}$, their paths cross at this point and because both particles reach this point at the same time they collide.
Specific behaviours
 \checkmark indicates equations for both paths
 \checkmark forms two equations using different time parameters
 \checkmark solves equations and checks third coefficient

- ✓ correct position vector
- \checkmark explains why paths cross and whether particles collide

(9 marks)

(a) Draw the subset of the complex plane determined by |z + 3| > |z - 3i| on the axes below. (3 marks)



Solution		
See diagram		
Specific behaviours		
✓ indicates points in plane		
✓ draws perp' bisector with dotted line		
✓ shades correct region		

(b) The circular arc in the diagram represents the locus of a complex number z.

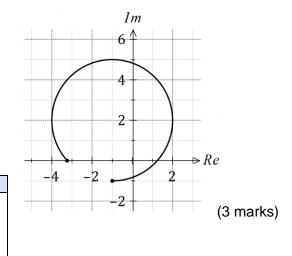
Without using Re(z) or Im(z), write equations or inequalities in terms of z for the indicated locus.

SolutionCircle has centre -1 + 2i and radius 3.

$$|z - (-1 + 2i)| = 3 \cap \left(-\frac{3\pi}{4} \le \arg z \le \pi\right)$$

Specific behaviours
 ✓ indicates correct centre and radius
 ✓ writes inequality for circle

 \checkmark writes restriction for $\arg z$



(c) Describe the subset of the complex plane determined by $|z - 3| + |z + 3i| = 3\sqrt{2}$.

(3 marks)

SolutionDistance between 3 and -3i in complex plane is $3\sqrt{2}$.Hence z must lie on the line segment between 3 and -3i inclusive
in the complex plane.Alternatively, when z = x + iy then locus is $y = x - 3, 0 \le x \le 3$.Specific behaviours \checkmark indicates distance between points \checkmark indicates subset is a line segment \checkmark correct description that includes endpoints

SPECIALIST UNIT 3

(8 marks)

Question 11

(a) Determine the equations of all asymptotes of the graph of y = f(x) when

(i)
$$f(x) = \frac{1+2x^2}{x(1-3x)}$$
.

$$f(x) = \frac{2x^2+1}{-3x^2+x}, \quad \lim_{x \to \pm \infty} f(x) = -\frac{2}{3}$$
(2 marks)
Asymptotes: $x = 0, x = 1/3, y = -2/3$.

$$\frac{\text{Specific behaviours}}{\sqrt{1 \text{ horizontal asymptote}}}$$

$$\checkmark \text{ horizontal asymptotes}$$

7

(2 marks)

$$f(x) = \frac{x^2 + 4}{x - 5}.$$

(ii)

Solution $f(x) = \frac{x^2 + 4}{x - 5} = x + 5 + \frac{29}{x - 5}$ Asymptotes: x = 5, y = x + 5. Specific behaviours \checkmark oblique asymptote \checkmark all asymptotes

y

 Λ

2

2

(b) The graph of y = g(x) is shown in the diagram, together with its three asymptotes.

The defining rule is given by

$$g(x) = \frac{ax(x+b)}{(2x+c)(x-d)}$$

where a, b, c and d are positive integer constants.

Determine, with brief reasons, the value of a, b, c and d.

• x

2

SolutionAsymptote $y = 1.5 \rightarrow a/2 = 1.5 \rightarrow a = 3$.Root at $(-2, 0) \rightarrow b = 2$.Asymptote $x = -2.5 \rightarrow c = 5$.Asymptote $x = 1 \rightarrow d = 1$.Specific behaviours $\checkmark \checkmark \checkmark \checkmark$ each value with appropriate reason

-6

-4

(7 marks)

Relative to an origin 0 located on level ground, a projectile is launched from $\begin{pmatrix} 0 \\ 7.5 \end{pmatrix}$ m with an initial velocity of $\begin{pmatrix} 20 \\ 21 \end{pmatrix}$ m/s. The motion of the projectile is only affected by a constant acceleration of $\begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ m/s².

(a) Derive from the acceleration vector an expression for the position vector r(t) of the projectile *t* s after its launch. (3 marks)

Solution
$$v(t) = \int a(t) dt$$
 $= \begin{pmatrix} 0 \\ -9.8t \end{pmatrix} + c \text{ and } v(0) = \begin{pmatrix} 20 \\ 21 \end{pmatrix}$ $= \begin{pmatrix} 20 \\ 21 - 9.8t \end{pmatrix}$ $r(t) = \int v(t) dt$ $= \begin{pmatrix} 20t \\ 21t - 4.9t^2 \end{pmatrix} + c \text{ and } r(0) = \begin{pmatrix} 0 \\ 7.5 \end{pmatrix}$ $= \begin{pmatrix} 20t \\ 20t \\ 7.5 + 21t - 4.9t^2 \end{pmatrix}$ Specific behaviours \checkmark antidifferentiates acceleration, shows constant \checkmark antidifferentiates velocity, shows constant \checkmark correctly uses initial conditions to evaluate constants

(b) Determine the distance travelled through the air by the projectile from when it is launched until the instant it reaches the ground, correct to the nearest 0.1 m. (4 marks)

SolutionReaches ground level when vertical component of position is 0:
$$7.5 + 21t - 4.9t^2 = 0 \Rightarrow t = \frac{10\sqrt{3} + 15}{7} \approx 4.6172 \text{ s}$$
Distance travelled: $d = \int_{0}^{4.6172} |v(t)| dt$ $= \int_{0}^{4.6172} \sqrt{20^2 + (21 - 9.8t)^2} dt$ $= 109.6 \text{ m}$ Specific behaviours \checkmark equation for time to reach ground level \checkmark integral for distance travelled \checkmark correct distance travelled

8

SPECIALIST UNIT 3

(7 marks)

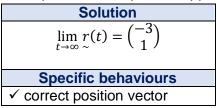
Question 13

At time t seconds, $t \ge 0$, the position vector r(t) m of a particle is given by

$$\sum_{i=1}^{\infty} r(t) = \binom{2e^{-0.5t} - 3}{1 - 4e^{-1.5t}}$$

9

State the position vector of the point that the particle approaches as $t \to \infty$. (1 mark) (a)



Determine the speed of the particle when t = 4, correct to the nearest 0.001 m/s. (b)

(3 marks)

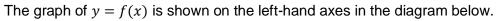
Solution

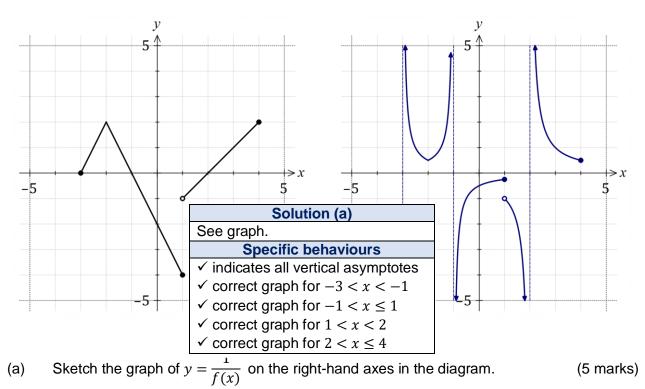
$$\begin{array}{l}
 \underbrace{v(t) = \begin{pmatrix} -e^{-0.5t} \\ 6e^{-1.5t} \end{pmatrix}} \\
 \underbrace{v(4) = \begin{pmatrix} -e^{-2} \\ 6e^{-6} \end{pmatrix}} \\
 \underbrace{|v(4)| = \sqrt{e^{-4} + 36e^{-12}}} \\
 = e^{-6}\sqrt{e^8 + 36} \approx 0.136 \text{ m/s}
\end{array}$$
Specific behaviours
 \checkmark obtains velocity vector
 \checkmark velocity vector at required time
 \checkmark calculates magnitude of velocity

(C) Express the Cartesian equation for the path of the particle in the form y = f(x). (3 marks)

> $x = 2e^{-0.5t} - 3$ $e^{-0.5t} = \frac{x+3}{2}$ $\therefore e^{-1.5t} = \left(\frac{x+3}{2}\right)^3$ $y = 1 - 4e^{-1.5t}$ $= 1 - 4 \left(\frac{x+3}{2}\right)^3$ $y = 1 - \frac{1}{2}(x+3)^3$ where $-3 < x \le -1$. **Specific behaviours** \checkmark obtains expression for $e^{-0.5t}$ in terms of x ✓ obtains y = f(x), simplification optional

(9 marks)





(b) Solve the following equations.

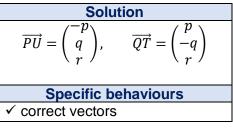
(i)
$$f(|x|) = 1$$
.
For $x \ge 0, f(x) = 1 \Rightarrow x = 3, \therefore x = \pm 3$.
Specific behaviours
 \checkmark correct solution set
(ii) $\left|\frac{1}{f(x)}\right| = 1$.
(1 mark)
 $\left|\frac{1}{f(x)}\right| = 1$.
(1 mark)
 $\left|\frac{1}{f(x)}\right| = 1 \Rightarrow f(x) = \pm 1 \Rightarrow x = -2.5, -1.5, -0.5, 3$
Specific behaviours
 \checkmark correct solution set
(iii) $|f(x)| + f(x) = 0$.
(2 marks)
Roots and intervals where $f(x) \le 0$:
 $(x = -3) \cup (-1 \le x \le 2)$.
Specific behaviours
 \checkmark includes 3 roots
 \checkmark correct solution set

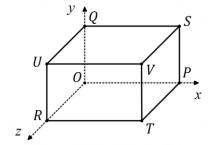
Question 15

The diagram shows a right rectangular prism.

Relative to vertex *O*, vertices *P*, *Q* and *R* have position vectors $\begin{pmatrix} p \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ q \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ r \end{pmatrix}$.

(a) Determine vectors \overrightarrow{PU} and \overrightarrow{QT} in terms of p, q and r.





(b) Use a vector method to show that diagonals *PU* and *QT* bisect each other.

(3 marks)

Solution
Midpoint of line *PU*:

$$m_1 = \overrightarrow{OP} + \frac{1}{2}\overrightarrow{PU} = \binom{p}{0} + \frac{1}{2}\binom{-p}{q} = \frac{1}{2}\binom{p}{q}$$

Midpoint of line QT:

$$\underline{m}_{2} = \overrightarrow{OQ} + \frac{1}{2}\overrightarrow{QT} = \begin{pmatrix} 0\\ q\\ 0 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} p\\ -q\\ r \end{pmatrix} = \frac{1}{2}\begin{pmatrix} p\\ q\\ r \end{pmatrix}$$

Since $m_1 = m_2$ then diagonals are coincident at their midpoints and so bisect each other.

Specific behaviours

 \checkmark develops expression for position vector of one midpoint

 \checkmark develops expression for position vector of one midpoint

 \checkmark shows midpoints are coincident and hence bisect

(c) Determine the relationship between p, q and r when \overrightarrow{PU} and \overrightarrow{QT} are perpendicular.

(2 marks)

SolutionFor vectors to be perpendicular, require
$$\begin{pmatrix} -p \\ q \\ r \end{pmatrix} \cdot \begin{pmatrix} p \\ -q \\ r \end{pmatrix} = 0.$$
Hence $-p^2 - q^2 + r^2 = 0$ or $r^2 = p^2 + q^2$.Specific behaviours \checkmark indicates condition for perpendicularity \checkmark correct relationship

(6 marks)

SPECIALIST UNIT 3

CALCULATOR-ASSUMED

Question 16

(i)

(a) Determine all solutions to the equation $z^3 - 8i = 0$ in exact polar form.

Solution

$$z^{3} = 8 \operatorname{cis}\left(\frac{\pi}{2}\right) \Rightarrow z = 2 \operatorname{cis}\left(\frac{\pi + 4n\pi}{6}\right), n = -1, 0, 1$$

$$z_{1} = 2 \operatorname{cis}\left(-\frac{\pi}{2}\right), \quad z_{2} = 2 \operatorname{cis}\left(\frac{\pi}{6}\right), \quad z_{3} = 2 \operatorname{cis}\left(\frac{5\pi}{6}\right)$$
Specific behaviours
 \checkmark expresses $8i$ in polar form
 \checkmark states one correct solution
 \checkmark states all correct solutions

(b) Consider the ninth roots of unity expressed in polar form $r \operatorname{cis} \theta$.

Determine the roots for which
$$0 < \theta < \frac{\pi}{2}$$
.
Solution
 $z^9 = 1 = \operatorname{cis}(2n\pi) \Rightarrow z = \operatorname{cis}\left(\frac{2n\pi}{9}\right)$ where $n \in Z$.
Hence
 $z_1 = \operatorname{cis}\left(\frac{2\pi}{9}\right), \quad z_2 = \operatorname{cis}\left(\frac{4\pi}{9}\right).$
Specific behaviours
 \checkmark general expression for roots
 \checkmark correct roots

(ii) Use all nine roots to show that
$$\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) = 0.$$

Solution
The nine roots are given by
$$z = \operatorname{cis}\left(\frac{2n\pi}{9}\right), n = -4, -3, \dots, 3, 4$$
, and the
sum of these roots, and hence their real parts, will be 0:
 $\cos(0) + \cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{6\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) + \cos\left(-\frac{2\pi}{9}\right)$
 $+ \cos\left(-\frac{4\pi}{9}\right) + \cos\left(-\frac{6\pi}{9}\right) + \cos\left(-\frac{8\pi}{9}\right) = 0$
But $\cos(-\theta) = \cos(\theta), \cos\left(\frac{6\pi}{9}\right) = -\frac{1}{2}$ and $\cos(0) = 1$. Hence
 $1 + 2\cos\left(\frac{2\pi}{9}\right) + 2\cos\left(\frac{4\pi}{9}\right) - 1 + 2\cos\left(\frac{8\pi}{9}\right) = 0$
 $\therefore \cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) = 0$
 $\therefore \cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) = 0$
 \checkmark uses sum of real parts of all roots is 0
 \checkmark uses $\cos(-\theta) = \cos(\theta)$ and known values

✓ simplifies to obtain required result

(8 marks)

(2 marks)

(3 marks)

SPECIALIST UNIT 3

Question 17

Plane Π has equation 2x - y - 3z = 13 and point *A* has coordinates (1, 5, 4).

(a) Determine the coordinates of the point in Π that is closest to *A*.

(4 marks)

(3 marks)

(7 marks)

Solution
Equation of line through
$$A \perp \Pi$$
 is $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$.
Intersects with plane $2x - y - 3z = 13$ when
 $2(1 + 2\mu) - (5 - \mu) - 3(4 - 3\mu) = 13 \Rightarrow \mu = 2$
 $r = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}$
Coordinates are $(5, 3, -2)$.
Specific behaviours
 \checkmark equation of line through point
 \checkmark uses intersection to obtain equation in μ
 \checkmark solves for μ
 \checkmark correct coordinates

Vector \underbrace{v}_{\sim} lies in plane Π , is perpendicular to the line $\frac{x+1}{-1} = \frac{y-3}{2} = \frac{z-1}{2}$ and $\left| \underbrace{v}_{\sim} \right| = \sqrt{26}$.

(b) Let v = ai + bj + ck. Determine the value of coefficients a, b and c, given that a > c.

Solution
$$v$$
 lies in plane $\Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} = 0 \Rightarrow 2a - b - 3c = 0$ $v \perp$ line $\Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = 0 \Rightarrow -a + 2b + 2c = 0$ $|v| = \sqrt{26} \Rightarrow a^2 + b^2 + c^2 = 26$ Solving equations simultaneously: $v = \pm \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$ $a = 4, \quad b = -1, \quad c = 3.$ Specific behaviours \checkmark two equations using normals \checkmark equation using magnitude \checkmark correct set of values

Let
$$u = \sqrt{3} + i$$
 and $v = \sqrt{2} \operatorname{cis}\left(\frac{\pi}{30}\right)$.

(a) Determine an exact value for

(i)
$$\arg(uv)$$
.

Solution

$$\arg(uv) = \arg u + \arg v = \frac{\pi}{6} + \frac{\pi}{30} = \frac{\pi}{5}$$

Specific behaviours
 \checkmark correct value

14

(ii)
$$|u+i|$$
.

Solution

$$|u + i| = |\sqrt{3} + 2i| = \sqrt{3 + 4} = \sqrt{7}$$

Specific behaviours
 \checkmark correct value

(b) Let $w = \frac{u^4}{v^n}$, where *n* is a positive integer. Determine the minimum value of *n* so that *w* is purely imaginary.

SolutionFor
$$Re(w) = 0$$
 then $\arg w = \pm \frac{\pi}{2}$.arg $w = 4 \arg u - n \arg v = \frac{4\pi}{6} - \frac{n\pi}{30} = \frac{(20 - n)\pi}{30}$ $\frac{(20 - n)\pi}{30} = \frac{\pi}{2} \Rightarrow n = 5$ Specific behaviours \checkmark expression for $\arg w$ \checkmark indicates values of $\arg w$ for $Re(w) = 0$ \checkmark correct value of n

(1 mark)

(1 mark)

(3 marks)

The modulus of complex number z is 1 and its argument is θ , where $-\pi < \theta \le \pi$.

- (C) Determine the value of θ for which
 - (i) |u + z| is minimum.

(1 mark)

Solution			
For $ u + z $ to be minimum, u and z must			
be parallel but in opposite direction.			
Hence			
$\theta = \frac{\pi}{6} - \pi = -\frac{5\pi}{6}$			
$\theta = \frac{1}{6} - \pi = -\frac{1}{6}$			
Specific behaviours			
✓ correct value			

(ii) $\arg(u+z)$ is maximum, where $-\pi < \arg(u+z) \le \pi$. (3 marks)

Solution	
Locus of $u + z$ is circle, centre u and radius 1.	Z
Maximum $\arg(u + z) = \frac{\pi}{3}$, and from geometric considerations this occurs when $\theta = \frac{5\pi}{6}$.	
Specific behaviours	
✓ sketch diagram (possibly seen in part(b)(i))	
\checkmark indicates z for maximum argument	
✓ correct value	

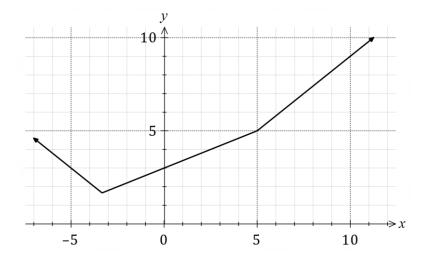
15

(8 marks)

Let f(x) = |ax + b| + |cx + d| where *a*, *b*, *c* and *d* are constants such that $a \ge c \ge 0$.

The graph of y = f(x) is shown below and passes through the points (0, 3), (5, 5) and (10,9).

16



(a) The equation f(x) = kx + 1 has an infinite number of solutions. State the value of the constant k. (1 mark)

Solution		
k is slope of RH part of $f. k = \frac{4}{5} = 0.8$.		
Specific behaviours		
✓ correct value		

(b) Determine the value of a, b, c and d.

(5 marks)

SolutionEquation of RH part of f is y = 0.8x + 1 and since $a \ge c \ge 0$ then $(a + c)x + (b + d) = 0.8x + 1 \Rightarrow a + c = 0.8, b + d = 1$

Equation of central part of f is y = 0.4x + 3 and so either

$$(a-c)x + (b-d) = 0.4x + 3$$
 or $(c-a)x + (d-b) = 0.4x + 3$.

If c - a = 0.4 then c = a + 0.4 but this is impossible given that $a \ge c$.

Solving a + c = 0.8 and a - c = 0.4 gives a = 0.6, c = 0.2.

Solving b + d = 1 and b - d = 3 gives b = 2 and d = -1.

Values: a = 0.6, b = 2, c = 0.2, d = -1.

Specific behaviours

- ✓ uses RH part to form equations for a + c and b + d
- ✓ uses central part to form equations for a c and b d
- \checkmark repeats for c a and d b and eliminates impossible pair of equations
- \checkmark correct values for *a* and *c*
- \checkmark correct values for *b* and *d*

(2 marks)

(c) Determine the minimum value of f(x).

Solution
$$-0.8x - 1 = 0.4x + 3 \Rightarrow x = -\frac{10}{3} \Rightarrow f\left(-\frac{10}{3}\right) = \frac{5}{3}$$
Specific behaviours \checkmark indicates correct method to obtain x-coordinate \checkmark correct minimum

Supplementary page

Question number: _____

Supplementary page

Question number: _____

© 2023 WA Exam Papers. Kennedy Baptist College has a non-exclusive licence to copy and communicate this document for non-commercial, educational use within the school. No other copying, communication or use is permitted without the express written permission of WA Exam Papers. SN245-214-4.